联系我们

联系人:赵斌(先生)

联系手机:13716086372

固定电话:52493638

企业邮箱:1127364777@qq.com

联系我时,请说是在电子快手网上看到的,谢谢!

今日最新资讯
热门资讯
电子快手网资讯
    梅兰日兰蓄电池M2AL12-150实时报价
    发布者:赵斌 13716086372  发布时间:2016-11-28 20:45:19  访问次数:33

    梅兰日兰蓄电池M2AL12-150实时报价正负活性物质比率与板栅合金
    早期的关于密封再化合的文献都强调活性物质配比的重要性,人们认为负极活性物质需要过量,因正极先达到析气电压时,氧才能比负极的氢气先产生。
    实验表明,正负活性物质比例的变化对密封反应效率没有任何影响,在实验范围内,密封反应效率几乎都达到99%以上。这为阀控电池的设计提供了有利的依据,再次证明增加正极活性物质比例时,无需担心O2的再化合效率。
    板栅合金本身对密封反应效率也没有影响,它只影响电池的析气电压。铅钙合金要比铅锑合金的析氢电压高100mV左右。因此确定电池的充电电压极限时,要考虑板栅合金的影响。梅兰日兰蓄电池M2AL12-150实时报价梅兰日兰UPS电源供电系统可用性发展的历程
      
      第一代梅兰日兰UPS电源——动态梅兰日兰UPS电源。其利用机械惯性储能以及电动机、发电机的能量传输机制以提供短时间的不间断供电,体积庞大、造价昂贵、噪声巨大,犹如一个小型电厂。动态梅兰日兰UPS电源的特征是占地面积较大,噪音大,不易维护和使用,接近一套工程设备。
      
      第二代梅兰日兰UPS电源——工频机。相比于动态梅兰日兰UPS电源,其可用性提升主要体现在以下几个方面:第一,体积变小,搬运和安装难度降低;第二,备电时间可以由后备电池决定,从动态梅兰日兰UPS电源的秒级备电上升到小时级;第三,可以对较差电网优化,如果一旦电网波动比较大,可以给后端设备提供相对稳定的电力供应。但是,工频梅兰日兰UPS电源依然存在一些问题:第一,运输与安装问题。工频机因为体积庞大无法通过门和内置的升压用变压器重量太重无法使用电梯运输等,导致安装此类梅兰日兰UPS电源经常要打墙安装、吊车运输;第二,维护问题,梅兰日兰UPS电源主机类似黑盒设计,有任何故障或者异常都只能依托原厂家维修,运维人员不敢直接打开操作,时间响应慢,对业务影响大。
      
      第三代梅兰日兰UPS电源——高频机。高频机的出现进一步提升了功率密度,体积减小了50%,从功能模块上提升了维护性,缩短了MTTR时间,可在数小时内完成修复。重量较工频机进一步降低,有效提升了工程的可安装性。同时,高频机也大都采用了全数字化的高集成化设计,在维护性方面也有较大改进。THDi可以做到5%以下,明显减少电网的谐波污染,效率也进一步提升到92-96%,体现出其节能优势。但是,对设备可用性的追求探索并未停止:单点故障是否可以排除?故障修复时间是否可以缩短至分钟级?维护技术门槛可否降低至可以自行维护?
      
      第四代梅兰日兰UPS电源——模块化高频梅兰日兰UPS电源。高频机技术的发展为梅兰日兰UPS电源的模块化架构提供了技术可能,结合类似通信电源的模块冗余技术的供电架构,模块化的高频梅兰日兰UPS电源得以实现。①可靠性大幅提高,常态工作的功率模块、控制模块实现全模块化冗余,消除单点故障点。②经济效益显著,模块化技术使得梅兰日兰UPS电源效率上了一个新台阶,同时采用了通信电源成熟的智能休眠功能,让梅兰日兰UPS电源系统始终处于最佳效率点。③可维护性方面揭开了历史崭新的一页,维护技术门槛也大幅下降。对于单模块容量50KVA以下的小系统模块化梅兰日兰UPS电源,采用模块热插拔技术运维人员可以自行在线维护和扩容,故障修复时间和扩容时间也缩短至分钟级,,对于单模块容量200KVA以上的模块化梅兰日兰UPS电源,采用模块隔离技术,虽然重量较重无法热插拔,但运维人员可以自行在线分、合模块来维护和查找故障,大幅度缩短修复时间,同时剩余模块自行保证用户的容量可用性。④在安装、运输上也体现出了模块化的明显优势——各单元模块化可拆卸。模块化高频机梅兰日兰UPS电源的功率密度比上一代产品更高,占地面积更小。 梅兰日兰蓄电池M2AL12-150实时报价电池的灌酸量
    在正常的充电方式中,正极的较低充电效率导致先析出氧气,产生的量随充电的进行而增加。在开口式设计中,析出的气体渗透到极板与隔板之间并且进入到电池上部空间。在阀 控电池中,隔板的压缩特性在某种程度上阻止了这种途径,但却提供了通过隔板进入负极的另一途径。这一过程受氧气扩散控制,并且在一定程度上取决于隔板的饱和度。


    当酸加入电池中,它自动进行空间排列,使得表面能减到最小。由于空气/液体的界面张力大,在隔板中使得电解液与玻璃纤维接触的面积最大,而与气相接触的表面积最小。 当 饱和度增加时,酸跨过小的空隙桥接,再留在大空隙中,并自由地到达气体通道,在较高饱和度时,较大尺寸的孔隙逐渐堵塞。大约90%饱和度时,最大孔隙被桥接,残留的10%(按体积计)气体含在孤立不连续的气泡中,这些气泡对氧迁移不会起有效作用。然而,在饱和度>90%的设计中,气体迁移会明显发生并可获得高的密封反应效率。这种事实可以用部分排酸量来解释。在紧装配时,通过隔板析出的氧气产生跨过隔板的分压,该压力直到它超过较大孔隙排出电解液,并经隔板传递到负极表面所需要的临界压力为止,这种行为相似于气体扩散电极的特性,Khomskage等人发现,当迁移率受到扩散限制时,析出的氧只有5%能到达负极并还原,借助压力促进迁移的方法,还原电流可提高一个数量级。对于较小的孔隙来说,需要较高压力来排出酸,气体进入电池上部空间并通过低压阀排出的可能性增加。
    阀控电池的密封反应效率对注入酸的数量十分敏感,尤其是在隔板压缩较大的情况下,多加1%的酸,密封反应效率就会由99%下降至70%—80%。因此,使用普通玻纤隔板必须控制隔板中的酸量,避免氧的扩散通道受阻,同时还要防止灌酸量不足,使电池容量受到限制。

免责声明:电子快手网转载作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味 着赞同其观点或证实其内容的真实性。如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。联系电话:0571-87774297。
0571-87774297