详细介绍:
恒力蓄电池厂家代理 恒力蓄电池报价
中山恒力电池科技有限公司是从事阀控式铅酸蓄电池生产的专业厂家,成立于1996年,下属江西恒力电池科技有限公司、恒力电池(香港)有限公司。公司占地面积近120亩,在职员工1000余名。
公司生产能力达200万千伏安时。Baace产品主要有固定型阀控密封式铅酸蓄电池、小型阀控密封式铅酸蓄电池、电动助力车用密封铅酸蓄电池、胶体电池、摩托车用铅酸蓄电池等几大类型,2V,4V,6V,8V,12V,16V等六大系列,容量从0.5AH到3000AH近二百多个规格型号。Baace产品广泛用于通信、电信、不间断电源(UPS)、应急照明、汽车船舶、电动车、金融系统、太阳能系统、警报系统等行业。产品不但畅销国内30多个省市,而且还远销欧盟、美国、日本、东南亚等国,在海内外享有极高盛誉。
北京鹏冠兴业科技有限公司,是一家专业从事UPS不间断电源、机房一体化、免维护铅酸蓄电池、EPS应急电源、逆变电源、稳压电源、比表面积分析仪等相关电子产品销售的代理公司。产品广泛应用于政府、金融、通信、教育、交通、气象、广播电视、工商税务、医疗卫生、能源电力等各个行业领域,致力于节约能源、提高能效、绿色能源一体化发展方向。 本公司代理UPS的品牌众多:如克劳瑞德、索科曼、艾默生、APC、西门子、梅兰日兰、山特、台达、山顿、GE、科华、宝星等品牌。
恒力蓄电池的应用范围
应用范围:控制系统、电动玩具、应急灯、电动工具、医疗器械、报警系统、应急灯照明、备用电力电源、UPS及计算机备用电源、电力系统、电信设备、消防和安全*系统、铁路系统、发电站、船舶设备、军用设备及电话交换机.
恒力蓄电池特点
1、安全性能好:正常使用下无电解液漏出,无电池膨胀及破裂。
2、放电性能好:放电电压平稳,放电平台平缓。
3、耐震动性好:完全充电状态的电池完全固定,以4mm的振幅,16.7Hz的频率震动1小时,无漏液,无电池膨胀及破裂,开路电压正常。
4、耐冲击性好:完全充电状态的电池从20cm高处自然落至1cm厚的硬木板上3次。无漏液,无电池膨胀及破裂,开路电压正常。
5、耐过放电性好:25摄氏度,完全充电状态的电池进行定电阻放电3星期(电阻值相当于该电池1CA放电要求的电阻),恢复容量在75%以上。
6、耐过充电性好:25摄氏度,完全充电状态的电池0.1CA充电48小时,无漏液,无电池膨胀及破裂,开路电压正常,容量维持率在95%以上。
7、耐大电流性好:完全充电状态的电池2CA放电5分钟或10CA。
尊敬的用户:
作为全球储能行业领导者一直致力于保护环境,为了减少二氧化碳排放量,阳光电池部分系列将采用新外壳材料,届时相关电池外壳颜色将由灰色变更为黑色。
恒力蓄电池的维护与保养
月度保护
每月完成下列反省:
——测量和记载德国阳光电池组房内情况温度,电池外壳温度和极柱温度。
——逐一反省电池的洁净度、端子的毁伤陈迹及温度、外壳及盖的损坏或温度。
——测量和记载电池系统的总电压、浮充电流。
季度保护
——反复各项月度反省。
——测量和记载各在线电池的浮充电压。
年度保护
——反复季度一切保护、反省。
——每年反省衔接局部能否有松动。
——每年电池组以实践负荷进行一次查对性放电实验,放出额外容量的30%~40%。
三年保护
——每三年进行一次容量实验(10h率),运用六年后每年做一次。若该组电池实放容量低于额外容量的60%,则以为该电池组寿命终止。
运用维护留意事项
——进行电池运用和维护时,请用绝缘东西。电池上面不成放置金属东西;
——请勿运用任何有机溶剂清洗电池;
——切不成拆开密封电池的平安阀或在电池中参加任何物质;
——请勿在电池组邻近抽烟或运用明火;
——德国阳光电池放电后,应在24h内对电池足够电,以免影响电池容量;
——贮存中蓄电池功能会退步,宜尽早运用;
——一切的维护任务必需由专业人员进行。
蓄电池的贮存-德国阳光胶体铅酸蓄电池的贮存方式
· 电池在贮存和运输过程中温度偏高或通风不良会导致自放电增大,因此应保持电池通风良好,并使电池远离明火、火花、热源等当保存电池时,应将电池从充电器和负载上取下并尽可能保存在干燥、阴凉环境中。电池保存期间,请按表二要求定期对电池进行补充充电。
免维护铅酸蓄电池质量优质:主要有复华、汤浅、捷豹、复华、阳光、梅兰日兰、朝日、冠军、CSB、梅兰日兰、索科曼等优质品牌;机房空调品牌主要代理艾默生、艾赛尔、艾洛其三大品牌。 我公司对所有员工要求严格,是一个极其富有责任感的工作团队,以诚为本,以客为根,服务为先,提倡高效率为客户服务。
恒力蓄电池行业信息—光伏薄膜电池制备技术发展分析
核心提示:备制薄膜太阳能电池的技术现在主要有一下几种: 第一种技术是制作外延(epitaxial)薄膜太阳能电池,从高掺杂的晶体硅片(例如优级冶金硅或废料)开始,然后利用化学气相淀积(
备制薄膜太阳能电池的技术现在主要有一下几种:
第一种技术是制作外延(epitaxial)薄膜太阳能电池,从高掺杂的晶体硅片(例如优级冶金硅或废料)开始,然后利用化学气相淀积(CVD)方法来淀积外延层。除成本和可用性等优势以外,这种方法还可以使硅太阳能电池从基于硅片的技术逐渐过渡到薄膜技术。由于具有与传统体硅工艺类似的工艺过程,与其它的薄膜技术相比,这种技术更容易在现有工艺线上实现。
第二种是基于层转移(layer transfer)的薄膜太阳能电池技术,它在多孔硅薄膜上外延淀积单晶硅层,从而可以在工艺中的某一点将单晶硅层从衬底上分离下来。这种技术的思路是多次重复利用母衬底,从而使每个太阳能电池的最终硅片成本很低。正在研究中的一种有趣的选择方案是在外延之前就分离出多孔硅薄膜,并尝试无支撑薄膜工艺的可能性。
最后一种是薄膜多晶硅太阳能电池,即将一层厚度只有几微米的晶体硅淀积在便宜的异质衬底上,比如陶瓷或高温玻璃等。晶粒尺寸在1-100mm之间的多晶硅薄膜是一种很好的选择。我们已经证实,利用非晶硅的铝诱导晶化可以获得高质量的多晶硅太阳能电池。这种工艺可以获得平均晶粒尺寸约为5 mm的很薄的多晶硅层。接着利用生长速率超过1 mm/min的高温CVD技术,将种子层外延生长成几微米厚的吸收层,衬底为陶瓷氧化铝或玻璃陶瓷。选择热CVD是因为它的生长速率高,而且可以获得高质量的晶体。然而这样的选择却限定了只能使用陶瓷等耐热衬底材料。这项技术还不像其它薄膜技术那样成熟,但已经表现出使成本降低的巨大潜力。
采用薄膜PV技术已经能够提高太阳能电池的效率或简化其工艺,并将降低其成本。但目前还没有人能够同时将这两方面结合起来。然而,最近的一些研究结果已经在正确的方向上又前进了必要的一步。
外延电池的改进
外延薄膜硅太阳能电池的效率不算太高(半工业化丝网印刷技术制作的电池约为12%),这限制了光伏业界对这种电池类型的关注程度。它可以获得与体硅太阳能电池相当的开路电压和填充因子(单晶硅太阳能电池为±77.8%)。然而,短路电流(Jsc )受限于薄的光学有源层(<20mm)。穿透外延层的光会被高掺杂、低质量的衬底收集而损失掉。因此,这两种太阳能电池技术之间的短路电流相差7 mA/cm2并不少见。体硅太阳能电池的Jsc典型值约为33 mA/cm2,而外延薄膜电池的平均值约为26 mA/cm2.
然而,两项独立的电池级开发成果已经使这种状况有所改善2.通过增大薄的有源层内的光程长度,我们报导的丝网印刷外延电池的Jsc达到30 mA/cm2,效率达到13.8%.
对这些结果有贡献的第一项改进是采用氟基等离子体粗糙处理得到的表面光散射。理想情况下,这种经过粗糙处理的有源层表面会使光100%地漫射 (即Lambertian折射器)。这使得光子能够以60°的平均角穿过有源层,使光程长度增大为原来的2倍。换而言之,使20 mm薄层的光学表现相当于40mm厚的有源层。我们发现,通过去除仅仅1.75 mm的硅就可以获得这种全光散射。等离子体粗糙处理的优点很多,包括更低的反射(从粗糙处理之前的35%下降到10%)、斜入射光耦合和更低的接触电阻 (因为硅衬底和银电极之间的接触面积更大)。我们观察到1.0-1.5的Jsc绝对增长,而效率增加0.5-1.0%.
第二项改进是通过引入多孔硅布拉格反射器来进行内部光捕获。为了降低长波长的光进入到衬底的透射,在衬底和外延层之间的界面上放置一个中间反射器。这样一来,到达该界面的光子就会被反射而第二次穿过有源层。由于光在进入电池的瞬间就开始漫射(这是由等离体粗糙处理的Lambertian特性所决定的),很大比例的光子会以大于逃逸角的角度打在前表面上。因此,大部分的光子会再次向内反射而第三次穿过有源层。这种情况不断地重复,使得光子有可能多次穿越外延层。
在实践中,这种反射器是通过电化学生长孔隙率高低交替变化的多孔硅叠层(多重布拉格反射器)来制作的。
12
延生长有源层的过程中,多孔硅叠层自动转变成包含不同尺寸大小的孔洞的交替层。这种结构已经被证明是一种理想的基于构造干涉的反射器。对于一个 15层的多孔硅叠层,计算表明光程长度增大为原来的14倍。也就是说,15 mm薄层的光学表现相当于厚度为210mm的硅层。
为了验证这两种改进方法的有效性,在三种不同的载体衬底上制作表面积为18 cm2的外延电池。在作为验证概念的单晶硅衬底上,电池的效率提高到13.8%,填充因子达到77.8%,这表明使用重组织多孔硅叠层不存在电导问题。而在低质量的硅衬底上获得的实验结果略低,效率是13.5%,填充因子为77.7%.对于多孔硅而言,在多晶衬底上生长的外延层质量较差,这个事实可以解释性能下降的原因。目前正在优化工艺,在不久的将来有望获得更高效率的增益。
多晶硅薄膜的改进
对于另一种类型的太阳能电池,也就是基于铝诱导晶化的多晶薄膜太阳能电池,我们最近获得了创纪录的7%的效率。该电池制作在高温衬底上,使用基于铝诱导晶化非晶硅的种子层,在1130℃下将种子层外延增厚成吸收层。需要指出的是,在这种工艺中硅不需要重新熔化。而在陶瓷衬底上将硅重新熔化。
获得多晶硅太阳能电池的另一种方法。然而,这种方法需要极高的温度(超过1400℃),这就要求衬底具有非常好的热稳定性,而且被污染的风险也很大。取得这些成绩的关键在于专门设计并实现的电池接触,并结合以等离子体粗糙处理的表面。
大多数适用于多晶硅太阳能电池的高温衬底都是绝缘体,所以必须开发新的金属接触方案以避免使用背接触。考虑到制造模块的低成本性,最方便的方法是将电池的互连工艺集成到电池制作过程中。我们采用的是将电池互连与电池接触相结合的单模块工艺。所有的接触都制作在电池顶部的叉指状图案中。可以使用不同的工艺序列来获得这种新颖的接触结构。目前使用的是一种简单的两步实验室工艺,将光刻与金属蒸发结合起来。而在大规模生产中,金属化可以通过单步工艺来实现,比如利用掩膜来进行丝网印刷或蒸发。
这种专门设计的接触结构被应用到有源层面积为1 cm2的电池中,并与带有外围基极接触的电池进行比较。两种接触类型的开路电压(Voc)基本相当,但是叉指状接触的电池在短路电流(Jsc)和填充因子方面的表现要好得多。根据晶粒尺寸和层厚的不同,电池效率可以达到5.6%3.
为了进一步提高电流密度,进而提高电池的效率,我们使用等离子体粗糙处理来实现新型的电池概念。迄今为止,在多晶硅太阳能电池的衬底结构中,衬底都用作背反射器。通过对电池前表面进行粗糙处理,可以降低电池的前反射率,并更好地将光耦合到电池中,从而能够更有效地俘获光子。等离子体粗糙处理是通过使用氟基化学物质在一个反应器中来完成的。结果表明,电流密度增加了约15%(在氧化铝衬底上得到这一结果)。增大的电流密度将电池的效率推进到创纪录的7%.
然而,虽然所获得的Voc (506 mV)和填充因子(71%)可谓达到了目前最好的工艺水平,但是电流密度(19.7 mA/cm2)和电池效率对于商业化而言仍然太低。通过优化等离子体粗糙处理工艺并降低电池背面场层的厚度,我们希望在不久的将来获得远超过7.0%的效率。
北京金业顺达科技有限公司一直专注于为用户提供可靠的电源保护系统,通过深入考察用户的供电环境,量身定做出电源系统方案;通过专业的工程服务,充分的发挥电源系统的性能,使得电源系统的可用性和有效性得到了保障。北京金业顺达科技有限公司为众多的交通通讯、发电、配电、遥控及交通工程、保安电力供应、医院、机场、金融 教育、。政府、数据工程系统、报警讯号及安全照明等提供电源系统设备和服务,获得了客户广泛认可和好评,在行业内取得了不俗的业绩和声誉。
公司拥有专业的销售和服务队伍。60%的员工拥有三年以上的电源系统专业从业经验。
“以人为本,敬业进取,周全服务,成久取信是公司员工为用户提供完美服务和坚定信念。
100%原装正品,3年质保,三年之内如有任何质量问题,都由本公司自己全部承担。
公司一贯坚持“质量第一,用户至上,优质服务,信守合同”的宗旨,凭借着高质量的产品,良好的信誉,优质的服务,产品畅销全国近三十多个省、市、自治区。
|