详细介绍:
科士达蓄电池厂家
谈谈与通信用阀控密封铅酸蓄电池内阻相关的一些事儿
我们注意到在最近的几年里,国内外通信用阀控式密封铅酸蓄电池相关标准的修订或重写都给蓄电池内阻提出了要求,运营商们也在招标书中写出相应条款,一些个检测也将内阻纳入了必选项,这是因为:
1、内阻现象是铅酸蓄电池固有的特性,出厂电池内阻水平在某种程度上反映了电池的设计水平和工艺水平;
2、工艺持续稳定之后,出厂电池内阻波动的大小在某种程度上反映了过程控制的疏严。
所以,谈谈与通信用阀控密封铅酸蓄电池内阻相关的一些事儿,引起大家关注内阻现象,思考设计、生产电池实践中内阻的相关表现,假以时日,把理论和经验提炼成有成效的手段引入到生产过程和出厂检验之中,将有利于产品质量的稳定,有利于相关检测的通过,有利于电池出厂配组的均衡性,也有利于售后服务的作业活动。
大家知道,密封铅酸蓄电池的内阻主要由电池的欧姆内阻、浓差极化内阻、电化学反应内阻组成。用不同的测试方法和不同时刻测得的内阻值中包含的成分及其相对含量是不同的,因而测得的内阻值也不相同。大家还知道,虽然内阻跟电池容量之间没有严格的数学关系,但当电池内阻增大时则预示着电池寿命终止。相关文献还小结电池的内阻跟电压之间没有对应的关系;同一组电池的各单体之间的内阻离散程度远大于电压之间的离散程度。
那么,利用这些所知,能否考虑在观察一个批量电池出厂时,随机取一个内阻中间值作为参照值进行比对,权作质检辅助手段阻闸不合格电池,同时也作为配组辅助手段,使电池组的配组的手段不只限制在开路电压的均衡上呢?
以下三个实例可以看出端藐:
实例一:福建某配套商,用商品内阻测试仪对入库电池进行内阻普测,大量数据说明,凡测得内阻一致或接近一致者配组,浮充模式下均衡性很好,凡测得内阻一致性明显不好者配组,浮充模式下均衡性很差。
实例二:湖南某运营商,用商品内阻测试仪对部分基站在线电池组进行内阻测量,所有记录表明,浮充电压表现正常的单体仍能测出内阻过大,放电结果证明该单体容量严重欠缺。
实例三:国外某中间商,用商品内阻测试仪对开路电压正常、但电流充不进放不出电池进行测量,结果内阻十倍以上正常电池。
尽管大家对以上实例所能说明的实质可能仁者见仁智者见智,但是,内阻揭示着电池性能的秘密,对内阻的认识将会日益加深,内阻的测量运用将会在业界掀起热潮,用户将会对内阻提出苛刻的要求等,估计是不会存疑的。那么,如果我们从现在起,致力于对内阻进一步的理解,致力于与内阻相关的工作,算不上先走一步也算是亡羊补牢了。
我们知道欧姆内阻(内阻值比例最大部分)是由电池内部的电极、隔膜、电解液、汇流排和极柱等全部零部件形成的电阻,这部分内阻在以后的每次检测电池内阻过程中值是基本不变的。生产过程中极板厚薄不均造成的装配松紧度不等、极柱与汇流排焊接质量造成的界面缺陷和电解液密度的差别都会导致内阻值敏感,若在批量电池中测得内阻中间值离散,大部分都是由此引起。而浓差极化内阻是由反应离子浓度变化引起的,只要有电化学反应在进行,反应离子的浓度就总是在变化着的,因而它的数值总是处于变化状态,测量方法不同或测量持续时间不同,其测得的结果也会不同,由此,不能简单的将不同批次的24只单体合格电池组组,其浓差极化差别需较长浮充时间和数次放电回充才能趋于一致。活化极化内阻是由电化学反应体系的性质决定的,电池体系和结构确定了,其活化极化内阻也就定了,只有在电池寿命后期或放电后期电极结构和状态发生了变化而引起反应电流密度改变时才有改变。在规模生产中,影响这部分内阻不一致的是化成充电工序,是很可能存在的充电机群之间实际电流误差所导致。
科士达蓄电池厂家
由于铅酸蓄电池内阻现象的复杂和变化性突出,当前尚欠成套理论支持,摸索之中的实践效果也事倍功半,但是,既有“功半”,就值得努力。因为,电池内阻和内阻的变化为我们带来电池性能一定的信息是不容置疑的。
科士达蓄电池厂家
铅酸蓄电池的硫化与清除方法
铅酸电池技术发展100年来本没什么变化。虽然在化学和结构上已有改进,但引起电池发生故障有一个共性的因素。这个故障原因是:硫酸盐堆积在极板上导致失效的结果,解决这些问题最有效的方法是应用脉冲技术。
脉冲技术有助于排除电池这些故障,它可以保持高的活性物质反应,使电池内部平衡,容易接受外接充电。这样一来,节约了因置换电池带来的各种相关费用。
技术介绍
专家预言:铅酸电池作为在电池电源领域里以位置将延续到下一世纪。但值得重视的问题是,多数电池的工作状态不能达到当今科技先进交通工具的需求。按说,铅酸电池的反应材料能维持8年—10年或更长一些,但事实上做不到。现在的电池平均寿命是6—48个月。而能用48个月的电池仅占30%。大部分电池则提前衰老和失效。影响电池寿命的一系列问题的原因是:硫酸盐的堆积,而最有效解决这些问题的方法是脉冲技术。
早在1989年就有个专利,利用脉冲技术提高电池的实用性,延长电池寿命。它的工作原理:使电池一直维持高的活性物质反应,使电池内部平衡,易接受充电。这种技术可提供大的放电容量,接受充电快,而且能使用持久。(换言之,延长电池工作寿命)
现在让我们来了解一下脉冲技术是如何有益于电池,其工作原理是什么。首先让我们重温一下电池的工作原理:依照国际电池理事会手册第11版:“蓄电池是属电化学原理设计范畴,电池产生的电能是由存储的化学能转变的。在车辆和动力机械设备上需要电池,它的三种主要功能是:
(1)、供电给点火系统,使发动机启动。
(2)、给发动机外的电器设备供电。
(3)、对电器系统起到稳压作用,使输出平滑和降低瞬间有电器系统发生高压。”
电池由两种不同材料构成(铅和二氧化铅),这两种材料置于硫酸液中反应产生电压,在放电过程,正极铅板上的活性材料与电解液的硫酸根生成PbSO4。同时,负极板上的活性材料也与电解液硫酸根生成PbSO4。所以,放电的结果使正负极板都覆盖了硫酸铅(PbSO4)。电池的恢复是通过对它反方向充电。
在充电过程,化学反应状态本是放电的逆反应。这时正负极板上的硫酸铅(PbSO4)分解变为原来状态,即铅和硫酸根,水分解出“H”和“O”原子,当分离后的硫酸根与“H”结合还原为硫酸电解液。
从上所述,蓄电池的工作本原理是硫酸和铅进行离子交换的化学反应过程形成的能量。在能量交换过程中,其反应生成物—硫酸铅在极板上是“临时”的。但值得注意的是,在充电还原过程,极板上的硫酸铅并不能全部溶解而堆在极板上。这种堆积物是电化学反应的剩余物,占据了极板的位置。这就是说,极板的有效反应材料在不断减少,这是导致电池失效的主要原因。(因硫酸铅导致电池失效,这种现象的通俗叫法是—极板盐化)
极板盐化问题:大多数电池失效归咎于硫酸铅的堆积。当硫酸铅分子的能量大于一个极限低值的时候,它们从极板上溶解,返回到液体状态。那么,它们可以接受再充电。但实际上,总有一部分的硫酸盐是不能返回电解液里的,而是贴附在极板上,最终形成不可溶解的晶体。硫酸盐结晶体是这样形成的:这些不能参与反应的单个硫酸盐分子的核心能量都处于极低状态,它逐步吸附其它因能量极低的硫酸盐分子。当这些分子堆积,并紧密地结合时,就形成一个晶体。这种晶体不能有效地溶解到电解液里去。这些晶体的存在,占据了极板的位置,使极板失去了充放电的能力。所以,极板被覆盖的这一点或这一部分都相当于是死点。
依照BCI手册58页说:“电池的本质是化学类器材,它的充电特性常常是由电池自身化学变化而改变的。例如,硫酸盐应是正常的化学反应生成物,但在非正常状态下,它变成多余物质而成为影响化学反应的主要问题,而这些多余的硫酸盐在极板上不断堆积,又长期被忽略。另外,新电池如存放时间过长,也会出现这种状态。当电池严重盐化时,就不能接受发电机对它的快而满的补充电。同样,也不能作满意的放电。随着盐化加剧,最终因电池不能接受充电和放电而失效。”第56页上说:“充电电压是受温度和电解液浓度、电解液接触极板的面积、电池的年限、电解液纯度等因素影响。极板上的盐化结晶很硬,使内阻增大。”
超过80%的电池是因为这些盐化晶体堆积而引起失效。这些晶体形成的速度、面积及硬度是与时间、电池充电状态、能量储备的使用周期有紧密关联。电池上的盐化结晶物堆积是非常麻烦的。以下几种情况是不可避免要产生盐化:
1、电池在安装使用前曾长时间搁置储存。实际上电池一旦加上硫酸液后就开始了化学反应而产生盐化物。所以,新电池的搁置也会盐化,导致在交通运输工具上安装不久的新电池就失效。
2、交通工具长时间静止不工作。
|