详细介绍:
澳特赛蓄电池
澳特赛蓄电池UPS的功能与作用
实际上,UPS是一种含有储能装置,并以逆变器为主要组成部分的恒压恒额的不间断电源。UPS在其发展初期,仅被视为一种备用电源。后来,由于电压浪涌、电压尖峰、电压瞬变、电压跌落、持续过压或者欠压甚至电压中断等电网质量问题,使计算机等设备的电子系统受到干扰,造成敏感元件受损、信息丢失、磁盘程序被冲掉等严重后果,引起巨大的经济损失。因此,UPS日益受到重视,并逐渐发展成一种具备稳压、稳频、滤波、抗电磁和射频干扰、防电压浪涌等功能的电力保护系统。
目前在市场上可以购买到种类繁多的UPS电源设备,其输出功率从500VA到3000kVA不等。当有市电供给UPS的时候,UPS对市电进行稳压(220V±5%)后为计算机供电。此时的UPS就是一台交流市电稳压器,同时它还向机内电池充电。因UPS设计的不同,UPS适应的范围也不同,UPS输出电压在±10-15%的变化一般属正常的计算机使用电压。当市电异常或者中断时,UPS立即将机内电池的电能通过逆变转换供给计算机系统,以维持计算机系统的正常工作并保护计算机的软硬件不受损失。
UPS的分类与特点
UPS电源按其工作方式可分为后备式和在线式两大类,按其输出波形又可分为方波输出和正弦波输出两种。后备式UPS电源在市电正常供电时,市电通过交流旁路通道再经转换开关直接向负载提供电源,机内的逆变器处于停止工作状态。这种UPS电源在实质上相当于一台稳压性能极差的市电稳压器。它除了对市电电压的幅度波动有所改善外,对市电电压的频率不稳、波形畸变以及从电网串入的干扰等不良影响基本上没有任何改善。只有当市电供电中断或低于170V时,蓄电池才对UPS的逆变器供电,并向负载提供稳压、稳频的交流电源。后备式UPS电源的优点是运行效率高、噪音低、价格相对便宜,主要适用于市电波动不大、对供电质量要求不高的场合。
在线式UPS电源在市电正常供电时,首先将市电交流电源变成直流电源,然后进行脉宽调制、滤波,再将直流电源重新变成交流电源,即它平时是由交流电经整流后又以逆变器方式向负载提供交流电源。一旦市电中断,立即改由蓄电池以逆变器方式对负载提供交流电源。因此,对在线式UPS电源而言,在正常情况下,无论有无市电,它总是由UPS电源的逆变器对负载供电,这样就避免了所有由市电电网电压波动及干扰带来的影响。显而易见,在线式UPS电源的供电质量明显优于后备式UPS电源,因为它可以实现对负载的稳频、稳压供电,且在由市电供电转换到蓄电池供电时,其转换时间为零。方波输出的UPS电源带负载能力差(负载量仅为额定负载的40-60%),不能带电感性负载。如所带的负载过大,方波输出电压中包含的三次谐波成份将使流人负载中的容性电流增大,严重时会损坏负载的电源滤波电容。正弦波输出的UPS电源的输出电压波形畸变度与负载量之间的关系没有方波输出UPS电源那样明显,负载能力相对较强,并能带微电感性负载。不管那种类型的UPS电源,当它们处于逆变器供电状态时,除非迫不得已,一般不要满载或超载运行,否则会使UPS电源的故障率明显增多。
澳特赛蓄电池
UPS与负载的匹配
有的UPS用瓦(W)或者千瓦(kw)来表示其输出功率,如500W、1kw等;有的UPS用伏安(VA)或者千伏安(kVA)来表示其输出功率大小,如3000VA、5kVA等。VA与W的一般换算关系为:瓦是伏安的0.8倍,如3kVA=2.4kw。UPS是线负载供电用的,每一种UPS都有特定的输出功率能力。如3kVA的UPS,其最大输出功率是3kVA或者2.4kw,此时就要求接到这台UPS上的设备的耗电功率总和不能超过2.4千瓦。通常设备都标明了耗电功率(或者额定功率),此时就应当使所有接到UPS上的设备的额定功率加起来不超过UPS的输出功率,这种方法通常就叫做UPS输出功率与负载耗电功率的匹配。但有些设备的启动功率是额定功率的3-5倍(例如打印机的额定功率为200W,则在计算负载匹配时要按5×200W=1000W进行折算)。除了打印机以外的其他计算机外部设备,通常启动功率略大于额定功率,故考虑匹配时最好按UPS输出功率的80%进行负载匹配。
标准的UPS未加外接电池前,在它的输出功率与负载耗电功率完全匹配(即全负载)的情况下,一般从市电中断时算起可供电约6-10分钟(具体数值每个型号的UPS说明书上都有记载)。如果以负载耗电功率只有UPS输出功率的一半计算(习惯叫半负载或者50%负载率,如1000W的UPS接入500W的负载),则可供电12-25分钟,不同负载量时的UPS供电时间大约可参照负载减半时间加倍的方式计算。使用注意事项正确使用UPS电源,不但可以减少UPS发生故障的机会,而且能够有效地延长其使用寿命。
4、一致性好:由于采用先进的电池内化成工艺及在生产过程中严控材料及零配件,使电池的压差在静态为±10mv,动态为±15mv。5、高密度大电流:由于采用专业化设计的板栅结构,和端子二次焊接技术的应用,确保低内阻,使蓄电池具有较高的重量比能量及良好的大电流放电性能。
6、深放电恢复性能好:蓄电池采用独特的板栅结构和电解液配方,确保在深放电后具有良好的恢复性能。
7、自放电率极低:在25℃室温下,静置28天自放电率小于2%。
8、安全可靠的防爆排气系统
澳特赛蓄电池
澳特赛规格型号
型 号
|
电压(V)
|
容量(Ah)
|
外型尺寸(mm)
|
重量(Kg)
|
长(L)
|
宽(W)
|
高(H)
|
总高(TH)
|
6-GFM-7
|
12
|
7
|
115
|
65
|
94
|
101
|
2
|
6-FM-17
|
12
|
17
|
180
|
77
|
167
|
167
|
4.5
|
6-FM-24
|
12
|
24
|
165
|
125
|
175
|
180
|
8
|
6-FM-38
|
12
|
38
|
197
|
165
|
175
|
180
|
12
|
6-FM-65
|
12
|
65
|
350
|
166
|
175
|
175
|
19
|
6-FM-100
|
12
|
100
|
407
|
173
|
210
|
236
|
30
|
6-FM-200
|
12
|
200
|
522
|
240
|
219
|
244
|
55
|
钠离子电池是什么鬼?和锂离子电池有什么关系?
钠离子电池最主要的特征就是利用Na+代替了价格昂贵的Li+,因此正极材料、负极材料和电解液等都要做相应的改变,适应Na离子电池。相比于锂元素,钠元素在地壳中的储藏量十分丰富,获得Na元素的方法也十分简单,因此相比于锂离子电池,钠离子电池在成本上将更加具有优势。
钠离子电池的概念起步并不晚,上个世纪80年代与锂离子电池几乎同时起步。然而到了90年代,由于Na离子电池能量密度要低于锂离子电池,因此渐渐淡出人们的视野。但是由于锂资源是一种相对稀缺的资源,因此面对节节攀升的碳酸锂价格,使得人们再次关注钠离子电池。
目前钠离子电池最大的难点是寻找一款稳定的钠离子电池负极材料,传统的锂离子电池负极材料——石墨,能够与Li结合,形成LiC6结构的化合物,理论比容量为372mAh/g,但是石墨仅能储存十分有限的Na离子,这可能是由于Na会首先在石墨表面形成镀层,而不是与石墨形成化合物。
为了改善石墨材料的性能,其中针对石墨材料的一个研究方向为开发高层间距石墨材料,例如将石墨的层间距提高到0.43nm,可以获得300mAh/g以上的可逆容量。
硬碳也是一种可以储存Na离子的负极材料,由于硬碳材料结晶度较低,碳原子层的排布规则度较低,因此可以储存较多的Na离子,其容量可达到300mAh/g以上,但是循环性能较差,例如1维的纳米碳纤维循环600次以后容量仅为176mAh/g。
而且硬碳的首次效率较低,这主要是因为硬碳较大的比表面造形成数量客观的SEI膜造成的,特别是对一些多孔碳材料,其较大的表面积严重的影响了钠离子电池的首次效率。因此降低硬碳材料的比表面积有助于提高硬碳材料的容量。
合金负极也是一种十分具有吸引力的负极材料,例如锡基和硅基材料,由于其较高的比容量,成功吸引了人们的注意。当然与锂离子电池一样,这些材料仍然存在膨胀过大的问题。锡基负极能与Na形成Na15Sn4合金,比容量可达847mAh/g,但是这也伴随着420%的体积膨胀,这极大的制约了锡基负极的应用。
磷负极也是钠离子电池负极的一个候选者,磷与Na可以形成Na3P结构,理论比容量达到2600mAh/g,当P与炭黑按照7:3的比例混合时,可以等到性能优良的复合材料,比容量达到2000mAh/g以上,并具有良好的循环性能和倍率性能。
除了上述的钠离子电池负极,其他的一些金属氧化物也是一种良好的负极材料,例如TiO2材料,由于其性能好,资源丰富,且成本低因此是一种十分具有潜力的钠离子电池负极材料。
例如TiO2/C复合材料,具有十分优良的倍率性能,在36C的超大倍率下,仍然具有90mAh/g以上。此外,金属硫化物也是一种可供选择的负极材料,例如MoS2材料在钠离子电池中也具有良好的电化学性能。
Na离子电池虽然能量密度不及锂离子电池,但是由于Na资源丰富,且十分容易获得,加之目前碳酸锂价格高涨,因此从长远来看,Na离子电池仍然具有十分广泛的应用前景,在一些对能量密度要求不高的领域,例如电网储能、调峰,风力发电储能等方面还是具有应用前景的。
因此在未来,钠离子电池可与锂离子电池形成高低搭配的组合,高端用锂离子电池,普通用钠离子电池。
东洋蓄电池销售网址:www.dongyangdc.com
|