详细介绍:
杭州山特UPS电源代理
根据式(1),当UPS要求输出线电压为380V时,直流母线电压Ud必须大于620V。工频机采用三相桥式整流时,直流母线电压Ud与输入交流电压Ui的关系为
(2)
式中Ui为输入线电压的有效值。根据式(2),当UPS输入线电压为380V时,直流母线电压不会超过513V,这样UPS的输出不能达到380V,必须通过变压器升压才能满足要求。在中、大功率场合,高频机的主电路由IGBT整流器、充电器和IGBT逆变器构成,如图2所示。整流器和逆变器的开关管均为IGBT,工作频率在10kHz以上,因此这种结构的UPS被称为高频机。由于高频机整流器采用PWM整流技术属于升压整流,UPS输出电压可以满足负载要求,因此输出无需配备升压变压器。
IGBT整流器具有升压功能,可以根据需要调节输出直流母线电压的大小,从而满足UPS输出交流电压的要求。IGBT整流器输出的直流母线电压与输入线电压的关系
式为
(3)
式中Ui为输入线电压的有效值;Ud为整流器输出的直流母线电压。
根据式(3)可知,当市电输入的线电压Ui为380V时,Ud的大小可以通过改变调制比M来调节,满足Ud大于620V。这样,逆变器的输出电压就可以满足380V的要求,无需设置升压变压器。
3 UPS能耗分析
(1)变压器损耗
根据上述分析可知,工频机输出电压较低,需要额外增加输出变压器,而高频机可以直接输出符合要求的电压,不需要设置输出变压器。变压器造成的损耗占UPS总损耗很大比例。变压器损耗分为铁耗、铜耗和杂散损耗,其中杂散损耗占比很小,本文不予讨论。
交流电流在变压器铁心中产生交变磁场,在此交变磁场作用下,所产生的磁滞损耗和涡流损耗,统称为“铁耗”,一般认为铁耗不随负载而变化,并以额定电压下变压器的空载损耗为铁耗。UPS的空载损耗占UPS总损耗的40%左右,变压器的空载损耗为UPS空载损耗的主要组成部分。磁滞损耗ph为铁心中建立交变磁通、克服磁畴回转所需的功率,与铁磁材料、磁场交变频率有关,工程上可表述为
(4)
式中,Kh为不同材料的计算系数,f为磁场交变频率,Bm为磁感应强度的最大值,α为由实验确定的正指数,V为铁心的体积。变压器硅钢片铁心中的涡流损耗为
(5)
式中,K为电势比例常数,d为硅钢片厚度,ρ为硅钢片电阻率。变压器绕组由铜线绕制,电流流经绕组时将产生损耗,一般称为铜损(pCu),其大小与负载电流的平方成正比
(6)
式中,IL为负载电流,IN为额定电流,Pk为短路试验测定的变压器短路损耗。高频机与工频机相比少了输出变压器,大大减少了UPS的损耗,提高了效率。
(2)滤波电感损耗
工频机的整流器通常为二极管不控整流或SCR组成的半控整流,工作频率为50Hz,谐波频率较低。而高频机的整流器和逆变器均工作在10kHz以上,UPS产生的谐波主要为高频谐波,可以使用较小的滤波电感就可以达到很好的滤波效果。与工频机相比,高频机使用的滤波电感体积较小,重量较轻,阻抗值也比较小。
电感的损耗也可以分为铁损和铜损,电感的铁损包括磁滞损耗和涡流损耗,其计算方法与变压器类似。由式(4)、(5)可见,磁滞损耗与开关工作频率成正比,与铁心体积成正比;涡流损耗与开关工作频率的平方成正比,与铁心体积成正比。与工频机相比,高频机开关频率较高,所用的滤波电感较小,铁心体积较小;此外,高频机使用的滤波电感绕组电阻较小,所以铜损较低。
PV电池采用各种吸光材料制作,包括结晶和非晶硅,碲化镉(CdTe)和铜铟镓硒化物(CIGS)材料制成的薄膜,以及有机/聚合物类的材料。
1.2 光伏电池等效电路模型
PV电池的等效电路模型(如图1所示)能够帮助我们深入了解这种器件的工作原理。理想PV电池的模型可以表示为一个感光电流源并联一个二极管。光源中的光子被太阳能电池材料吸收。如果光子的能量高于电池材料的能带,那么电子就被激发到导带中。如果将一个外部负载连接到PV电池的输出端,那么就会产生电流。
|