商铺名称:北京鑫源宏宇科技有限公司
联系人:吴明(先生)
联系手机:
固定电话:
企业邮箱:2755257920@qq.com
联系地址:北京市昌平区回龙观西大街
邮编:100000
联系我时,请说是在电子快手网上看到的,谢谢!
可可蓄电池厂家
可可蓄电池性能的维护方法:
第一,自动均/浮充转换。即供电正常时对电池进行均恒充电。电池放电后自动对电池进行均恒充电,当电池充满后,自动转为浮充电。第二,充电限流。采取先恒流后恒压的充电方式。充电初期,充电电流较大,UPS根据所配置的蓄电池电池容量,自动将充电电流限制在0.1~0.2C,对蓄电池进行恒流充电,确保蓄电池充电时安全快速。当蓄电池容量达到80%以后,UPS转为浮充电压对蓄电池进行恒压充电。第三,后备时间显示及低电压报警。当UPS由于各种原因切换到蓄电池供电时,用户需要及时地了解系统的后备时间,且采取相应的措施。当蓄电池电压降到低限时,报警通知用户,然后自动关机以防止蓄电池深度放电。第四,温度补偿。环境温度变化时,必须对浮充电压进行校正,校正系数为18mV/℃(标称12V的电池)。为简单计,可以分级校正。电池静置时,温度太高,电池的自放电加剧。电池使用条件推荐为20℃~25℃,温度太低,电池放电容量降低,充电接受能力下降。温度太高,反应加剧,导致失水,极板腐蚀加剧。电池的充电电压通过温度补偿来改变,温度高时,充电电压降低,使电池处于 佳浮充状态。因此,保证电池服务 佳方案是将环境温度控制在20℃~25℃,控制放电次数、放电深度、放电和充电电流以及定时充放电的周期。
可可蓄电池操作时的注意事项:
可可蓄电池充不进电是指发动机在正常工作的情况下,可可蓄电池长时间充电而电压上升很慢。
蓄电池充不进电是指发动机在正常工作的情况下,蓄电池长时间充电而电压上升很慢。其原因如下:1.充电线路中接线头松动或锈蚀,使电阻增大,电流强度减小。2.可可蓄电池极板硫化,使其表面附有一层导电性能差的白色硫酸铝晶粒。这种粗大晶粒堵塞极板孔隙后,电解液便难以渗入,导致内阻增大,电流无法通过。3.由于采取大电流给蓄电池充电或放电,电解液比重过大或液面高度不够等原因,使蓄电池极板损坏。诊断时,先检查各接线头是否松动或锈蚀,然后根据充电时的现象来判断极板是否硫化。若充电时电解液的温度上升很快,或充电时间不长,电解液便产生大量气泡,但电压并未提高,电解液比重也无明显增加,则说明极板已硫化。当硫化不严重时,可倒出全部电解液,注入蒸馏水,然后用2安培左右的小电流进行长时间充电,使硫酸铝溶解,但应注意不要让蓄电池温度升高。当电解液比重在数小时内不增加时,表明蓄电池已充足电,再进行放电。经过多次充放电循环,使活性物质复原后,如仍不正常,应更换新品。
可可蓄电池正确的使用方法:
1) 平时对电池的清洁卫生工作应用湿布进行,若用干燥的东西擦拭,容易产生静电,而静电电压有时会高达数千至上万V,有引发爆炸的危险。2) 阀控式密封铅酸蓄电池由于结构特殊,它对周围环境和温度较为敏感,如果电池长期在高温条件下运行,其使用寿命将会大打折扣。所以机房温度应控制在至少25℃以下,正确的维护使用,可以使电池的使用寿命长达10~15年。3) 阀控式密封铅酸蓄电池的单只电池电压正常为2.23~2.25V,多数厂家的推荐值为2.25V。通信专业的浮充电压建议采用53.6~53.8V。浮充电压高低的选择是使用电池的关键所在,因为电池的自放电系数极小,所以不需要太高的电压。如果浮充电压过高,不仅会使浮充电流偏大,增加能耗,还会加速正极板栅腐蚀,使电池寿命缩短。但如果浮充电压过低,则会使电池因充电不足,处在亏电的状态而导致电池加速报废。用户可以结合自己的实际情况对浮充电压进行调整,使之工作在状态。4) 对于容量不同,新旧不同,厂家不同,规格不同的蓄电池,由于其特性值有差异,不能混合连接使用。
5) 由于新电池在运输存放的过程中因自放电难免损失部分能量,所以安装后不宜立即投入运行,应当在使用前进行必要的充电以恢复电池的能量。
可可蓄电池使用时的误区:
误区一:冬季使用蓄电池启动时,不间断地使用启动机,导致蓄电池因过度放电而损坏。
上述是对冠军汽车蓄电池使用误区做出的分析,通常,冠军汽车蓄电池充电时电池内部产生的气体基本被吸收还原成电解液,基本没有电解液减少。误区二:在液面低时,补充电解液或加饮用纯净水,而不是蒸馏水。如果加含*的电解液,会使蓄电池内部电解液浓度增大,可能出现沸腾、酸雾等现象,严重影响蓄电池的使用寿命;用饮用纯净水代替蒸馏水使用,纯净水中含有多种微量元素,对蓄电池有不良影响。
误区三:电解液的密度不进行检查和调整,特别是冬季来临时,造成蓄电池容量不足,如果去湖南等北方甚至会造成电解液结冰的现象。误区四:在使用免维护蓄电池时,简单地认为免维护就是无须任何维护。误区五:蓄电池极桩接线柱外表有腐蚀物不需处理,只要不松动就可以了。外表出现了腐蚀物,接线柱内表面也会出现腐蚀现象,导致电阻值增大,影响蓄电池的正常充电和放电,必须及时处理。
可可蓄电池电极负荷特性:
可可蓄电池在放电时,溶液中的so42-分别进入正拉极板。在负极板上同Pb结合生成PbSOelU在正极板上,同时有4个进入正极板高2个O反应生成2个H20,再回到溶液中。这样,周负极板相比在极板上就多发生4个扩的进入和2个0 #外出。这就是说,,我们都知道,电池在充放电时正极板发生的离子反应比负极板剧烈。可可蓄电池在充电时,足极板与溶液的界面上有三条反应线,、每条反应线都表示有相应的化学反应在进行,而负极槔表治上长有一条反应线。可可电池在放电过程史,正极板上离子参加电化学反应的数目逆负极板多。在溶液中相同类型的离子其扩散运动的力和运动的速度是相同的,所以由于正极板反应的离子多,离子发动时且力也就足极板的实际反应速度就控制着整个铅蓄电池的电量放出的速度。有些场合中,要求控制可可电池中氧的析出达到 小,这时就要将电池极板群做成“正包负”的结梓。这种结构常用在同积密电器配装的密封式铅酸电池中。为了提高可可电池的过载能力,就应该提供较好的离子扩散条件。因此可可蓄电池多采用负极包围正极的结构,在板式电极结构里, 外的两片通常总是负极,在圆柱形结构中,正极总居中位。可可电池中带凹格的隔板,凹面面向正极,以适应迮极板需酸量较大的要求。
可可蓄电池外壳突发变形的原因:
蓄电池变形不是突发的,往往有一个渐进的过程。当蓄电池在充电容量达到80%左右进入高电压充电区时,在正极板上先析出氧气,氧气通过隔板中的孔到达负极,在负极板上进行氧复活反应,反应过程中会产生热量。当充电容量达到90%时,氧气的产生速度增大,负极开始产生氢气。大量气体的增加使蓄电池内压超过开阀压力,安全阀打开,气体逸出,终表现为失水。随着蓄电池循环次数的增加,水分逐渐减少,导致蓄电池出现如下情况:热容减小。在蓄电池中热容大的是水,水损失后,蓄电池热容大大减小,产生的热量使蓄电池温度升高很快。2)某些电池出现极板不可逆硫酸盐化,内阻增大,充电时蓄电池发热,当温度上升到壳体的临界温度时,产生的热量不能得到充分的散发,将导致蓄电池壳体变形。3)由于失水后蓄电池中超细玻璃纤维隔板发生收缩现象,使之与正负极板的附着力变差,内阻增大,充放电过程中发热量加大。经过上述过程,蓄电池内部产生的热量只能经过蓄电池槽散失,如散热量小于发热量,即出现温度上升现象。温度上升,使蓄电池析气过电位降低,析气量增大,正极大量的氧气通过"通道"。在负极表面反应,发出大量的热量,使温度快速上升,形成恶性循环,即所谓的"热失控",终温度达到80%以上,即发生变形。
可可蓄电池性能的影响因素:
电池温度影响电池可靠性:温度对电池的自然老化过程有很大影响。详细的实验数据表明温度每上升摄氏5度,电池寿命就下降10%,所以UPS的设计应让电池保持尽可能的温度。所有在线式和后备/在线混合式UPS比后备式或在线互动式UPS运行时发热量要大(所以前者要安装风扇),这也是后备式或在线互动式UPS电池更换周期相对较长的一个重要原因。电池充电器设计影响电池可靠性:洛奇蓄电池充电器UPS非常重要的一部分,电池的充电条件对电池寿命有很大影响。如果电池一直处于恒压或“浮”型电器充电状态,则UPS电池寿命能大程度提高。事实上电池充电状态的寿命比单纯储存状态的寿命长得多。因为电池充电能延缓电池的自然老化过程,所以UPS无论运行还是停机状态都应让电池保持充电。洛奇蓄电池电压影响电池可靠性:电池是个单个的“原电池”组成,每一个原电池电压大约2伏,原电池串联起来就形成了电压较高的电池,一个12伏的电池由6个原电池组成,24伏的电池由12个原电池组成等等。UPS的电池充电时,每个串联起来的原电池都被充电。原电池性能稍微不同就会导致有些原电池充电电压比别的原电池高,这部分电池就会提前老化。只要串联起来的某一个原电池老人性能下降,则整个电池的性能就将同样下降。试验证明电池寿命和串联的原电池数量有关,电池电压就越高,老化的就越快。
可可蓄电池充电时的注意事项:
可可UPS快速充电:是 近随着电动汽车等设施所使用蓄电池需要快速充电而出现的,也更能接近蓄电池的理想充电曲线, 主要的方式有脉冲充电和变电压间歇充电。可可蓄电池由于在线式UPS电源的蓄电池时刻要挂在直流母线上,这样就限制了对UPS蓄电池充电有些充电方式是不能使用的,综合以上各个充电方法的优缺点,本文中对蓄电池充电采用分阶段充电方式,在开始阶段采用大电流恒流充电,当蓄电池荷电量达到一个阶段后,采用小一级的电流恒流充电,后转为恒压充电,将直流母线电压稳定在浮充电压值。并检测环境温度,根据稳定的变化,对蓄电池的浮充电压进行温度补偿,防止蓄电池出现过充或者欠充。本文所涉及到的UPS电源采用12伏的阀控式铅酸蓄电池,设定终止放电电压为10.5V,浮充电压为13.5V。在充电过程中,根据蓄电池特性设定初始充电电流,当蓄电池电压达到标称值后,降低充电电流,继续恒流充电,直到到达浮充电压,切换为恒压充电,并将直流母线电压稳定在浮充电压。