商铺名称:北京鑫源宏宇科技有限公司
联系人:张洁(小姐)
联系手机:
固定电话:
企业邮箱:848155033@qq.com
联系地址:北京市昌平区回龙观西大街
邮编:100000
联系我时,请说是在电子快手网上看到的,谢谢!
OTP蓄电池6FM-24发电专用
电力通信基站OTP蓄电池的维护与修复
作为后备电源的大容量铅酸蓄电池(以下简称“电池”)是基站电源的保障。在国内出现“电荒”的时候,后备电源的可靠性显得格外重要。在长三角和珠三角地区,每周内停三供四的时间很多,甚至出现停四供三更加严重的局面。多数处于野外的基站,其供电是难以保证都是采用一、二类电源的,这样,电池的可靠性问题尤其严重。
虽然目前的科学技术飞速发展,近年铅酸蓄电池的发展也比较快,基本上以大型阀控密封式铅酸蓄电池代替了防酸隔爆型电池。就是大型阀控密封式铅酸蓄电池近些年也在发展。但是大容量的固定电池还是以铅酸蓄电池为唯一的选择。如何延长铅酸蓄电池的正常使用寿命,一直是业内人士探讨的主要问题。
相同的电池,在不同的设备条件、不同的使用条件和不同维护条件下使用寿命相差很大。这就需要在设备条件、使用条件和维护条件上寻找其差异。而电池失效的的几个主要现象是:
a.正极板软化;
b.正极板板栅腐蚀;
c.负极板硫化;
d.失水;
e.少数电池出现热失控(包括电池鼓胀)。
下面,就以电池失效模式来探讨设备条件、使用条件和维护条件对电池失效的影响及其应对方法。
一、电池的失效模式及其原因
1、电池的正极板软化
电池的正极板是由板栅和活性物质组成的,其中活性物质的有效成分就是氧化铅。放电的时候氧化铅转为硫酸铅,充电的时候硫酸铅转为氧化铅。氧化铅是由α氧化铅和β氧化铅组成的,在2种氧化铅中以其中α氧化铅荷电能力小但是体积大,比β氧化铅坚硬,主要起支撑作用;β氧化铅恰好相反,荷电能力大但是体积小,比α氧化铅软,主要起荷电作用。α氧化铅是在碱性环境中生成的,在电池内部一旦出现参与放电以后,充电只能够生产β氧化铅。正极板的活性物质是多孔结构的,就与电解液——硫酸的接触面积来说,多孔结构是平面的数十倍。如果α氧化铅参与放电以后,重新充电以后只能够生成β氧化铅,这样就失去了支撑,不仅仅会产生正极板活性物质脱落,而且脱落的活性物质还会堵塞正极板的微孔,导致正极板参与反应的真实面积下降,形成电池容量的下降。后备电源的电池使用年限要求比较严格,对电池的容量要求比较宽,因此后备电源使用的电池α氧化铅和β氧化铅比例比深循环的动力型电池大一些。为了减少α氧化铅参与放电,一般控制放电深度仅仅为40%。随着电池的使用时间的增加,电池的容量下降,新电池放电40%的电量,对于旧电池来说必然超过40%的,所以旧电池就相当于放电深度深,电池的正极板软化也会被加速。所以,电池的容量寿命曲线的后期下降速率远远高于中期。电池容量越小,放电深度越深,α氧化铅损失也越多,正极板软化也越严重,导致电池容量下降越快,形成了恶性循环。
这样,电池的放电深度需要严格控制。实现这个控制的是靠基站的电源管理系统的设置。目前控制电池放电深度的主要标准还是一次放电量和放电电压。这样,尽可能避免在应急的时候强制放电,而应该按照放电量来增加电池的容量。
2、电池的正极板腐蚀
正极板的板栅中的铅在充电过程中或被氧化为氧化铅,并且不能够再还原为铅,形成正极板腐蚀。而氧化铅的体积比铅的体积大,形成体积线性增加变形,使正极板活性物质与板栅脱离,导致正极板失效。而过充电会严重加速正极板腐蚀。我们一般以为不会产生过充电状态。实际上,基站的浮充电压如果跟不上环境温度的上升而进行下降的补偿,过充电就产生了。如基站的空调不够或者损坏,电池的过充电也会产生。这样电池的正极板板栅在不同的使用条件下会有不同的腐蚀速度。长三角和珠三角地区的正极板腐蚀也会比内地严重,这与电池的使用环境温度关系密切。
如何确定UPS不间断电源功率?
许多用户在确定UPS功率时,由于资金的困扰和对UPS电源不甚了解,往往从目前机房设备的容量去选择UPS的功率,这样就会导致UPS功率容量与负载的功率相同或略大。实际上这样选择是不明智的。选购UPS电源时,要根据自身电网条件、用电环境、自然环境、用电设备的特殊要求、应用和维护水平等因素,确定满足需要的UPS电源。建议用户从以下几个方面来确定所选择的UPS功率。
OTP蓄电池6FM-24发电专用
2每月应检查一次充电设备运行参数是否在合格范围之内,有无故障告警信号。不论在任何情况下,蓄电池的浮充电压不应超过厂家给定的浮充值,并且要根据环境温度变化,随时利用电压调节系数±3mv/℃来调整浮充电压的数值。
3.3.3鉴于不均衡性对阀控铅酸蓄电池的影响,应采用浮充电压的下限值进行浮充供电。
3.3.4在蓄电池不均衡性比较大、较深度地放电以后,以及在蓄电池运行一个季度时,应采用均衡的方式对电池进行补充充电。在均衡充电时要留意环境温度的变化,并随环境温度的升高而将均衡电压设定的值降低。例如,如环境温度升高1℃,那么均衡充电的电压值就要降低3mv。
3.3.5尝试用脉冲充电的方式对“落后电池”进行充电,促使南都蓄电池的活化和恢复。
3.3.6精心维护,在阀控式电池组投产运行前应认真记录每只单体电池的电压和内阻数据,作为原始资料妥善保存,以后每运行半年,需将运行的数据与原始数据进行比较,如发现异常情况应及时进行处理。
3.3.7每月应测一次电池单体电压及终端电压。密封电池端电压的丈量不能只在浮充状态,还应在放电状态下进行。端电压是反映密封电池工作状况好十的一个重要参数。南都蓄电池浮充状态下进行电池端电压丈量,由于外加电压的存在,丈量出的电池端电压易造成假象。即使有些电池反极或断路也能丈量出正常数值(实际上是外加电压在该电池两端造成的电压差),这极易在交流失电时造成变电所和发电厂事故。定期在放电状态下进行电池端电压丈量,这种情况就完全可以避免了。
3.3.8为保证电池有足够的容量,每年要进行一次容量恢复试验(即大充大放),让电池内的活化物质活化,恢复电池的容量。其主要方法是将电池组脱离充电机,在电池组两端加上可调负载,使电池组的放电电流为额定容量的0.1倍,每半小时记录一次电池电压,直到电池电压下降到1.8v/只(对于2v/只的单体电池)或10.8v/只(对于12v/只的单体电池)后停止放电,并记录时间。静置2h后,再用同样大小的电流对蓄电池进行恒流充电,使电池电压上升到2.35v/只或14.1v/只,保持该电压对电池进行8h的均衡充电后,将恒压充电电压改为2.25v/只或13.5v/只,进行浮充电。上述方法,可以放出蓄电池容量的80,由于考虑到安全运行,也可以放出蓄电池容量的30~50,这需要查对蓄电池的放电曲线进行。
3.3.9阀控铅酸蓄电池运行到使用寿命的1/2时,需适当增加测试的频次,尤其是对单体12v的电池增加测试。假如电池内阻忽然增加或丈量电压有数值不稳(特别是小数点后两位),应立即作为“落后电池”,进行活化处理。
3.3.10定期检查一下外观阀控铅酸蓄电池的有无异常变形和发热,仔细检查安全阀的四周是否有被喷射的污点,以此确定安全阀是否拧紧或损坏。
3.3.11蓄电池因单只容量不够需更换时,只能一次性全部更换,不能仅把性能指标不够的蓄电池单独更换下来,否则会因蓄电池的内阻不平衡而影响整组电池的发挥,缩短整组电池的使用寿命。
3.3.12不要单独增加或减少电池组中几个单体电池负荷,这将造成单体电池容量的不平衡和充电的不一致性,降低电池寿命。如在整组电池抽出一部分作其它电源,或充电不在一起,放电时叠加一起。
3.3.13采用技术手段加强监视,如使用蓄电池在线监测装置,实时监测蓄电池工作状态。对无人值班变电所还应当将采集的信息送到监控中心,出现异常情况及时报警,尽早处理。